Solution-Processed Hybrid Light-Emitting Devices Comprising TiO2 Nanorods and WO3 Layers as Carrier-Transporting Layers

نویسندگان

  • Tsung-Yan Tsai
  • Po-Ruei Yan
  • Sheng-Hsiung Yang
چکیده

The goal of this research is to prepare inverted light-emitting devices with improved performance by combining titanium dioxide (TiO2) nanorods and tungsten trioxide (WO3) layer. TiO2 nanorods with different lengths were established directly on the fluorine-doped tin oxide (FTO) substrates by the hydrothermal method. The prepared TiO2 nanorods with lengths shorter than 200 nm possess transmittance higher than 80% in the visible range. Inverted light-emitting devices with the configuration of FTO/TiO2 nanorods/ionic PF/MEH-PPV/PEDOT:PSS/WO3/Au were constructed. The best device based on 100-nm-height TiO2 nanorods achieved a max brightness of 4493 cd/m2 and current efficiency of 0.66 cd/A, revealing much higher performance compared with those using TiO2 compact layer or nanorods with longer lengths as electron-transporting layers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells.

Colloidal metal oxide nanocrystals offer a unique combination of excellent low-temperature solution processability, rich and tuneable optoelectronic properties and intrinsic stability, which makes them an ideal class of materials as charge transporting layers in solution-processed light-emitting diodes and solar cells. Developing new material chemistry and custom-tailoring processing and proper...

متن کامل

WO3 Nanoparticles or Nanorods Incorporating Cs2CO3/PCBM Buffer Bilayer as Carriers Transporting Materials for Perovskite Solar Cells

In this work, we demonstrate a novel carrier transporting combination made of tungsten trioxide (WO3) nanomaterials and Cs2CO3/PCBM buffer bilayer for the fabrication of perovskite solar cells (PSCs). Two different types of WO3, including nanoparticles and nanorods, were prepared by sol-gel process and hydrothermal method, respectively. Cs2CO3/PCBM buffer bilayer was inserted between WO3 and pe...

متن کامل

Enhancement of Performance of Organic Light Emitting Diodes by Using Ti- and Mo-Oxide Nano Hybrid Layers

Nanorod-like TiO2 (nc-TiO2) and MoO3 (nc-MoO3) films were thermally grown from Tiand Mo-metallic wafers. Nanohybrid films of N,N’-diphenyl-N,N’-bis(1-naphthyl)(1,1’-biphenyl)-4,4’diamine (NPB)/TiO2 and NPB/MoO3 used as anode/hole transport layer (HTL) heterojunctions in blue organic light emission diodes (OLEDs) were prepared by coating NPB onto the nc-TiO2 and nc-MoO3 and TiO2. Characterizatio...

متن کامل

Stable, efficient, and all-solution-processed quantum dot light-emitting diodes with double-sided metal oxide nanoparticle charge transport layers.

An efficient and stable quantum dot light-emitting diode (QLED) with double-sided metal oxide (MO) nanoparticle (NP) charge transport layers is fabricated by utilizing the solution-processed tungsten oxide (WO3) and zinc oxide (ZnO) NPs as the hole and electron transport layers, respectively. Except for the electrodes, all other layers are deposited by a simple spin-coating method. The resultin...

متن کامل

Thin-film Encapsulation of Organic Light-Emitting Diodes Using Single and Multilayer Structures of MgF2, YF3 and ZnS

In this research, the lifetime of green organic light emitting diodes (OLEDs) is studied using four passivation layers. To encapsulate the OLEDs, MgF2, YF3, composed of alternating MgF2/ZnS and YF3/ZnS layers were grown by thermal vacuum deposition. Measurements show that the device lifetime is significantly improved by using YF3 and ZnS as passivation layers. However, diodes encapsulated by Mg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016